合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 胜利油田常规和亲油性石油磺酸盐组成、色谱、质谱、界面张力测定(二)
> 不同表面张力和接触角下膨胀土裂隙的发展演化过程(三)
> 新型均相微乳液型助排剂AO-4表/界面张力测定及室内评价——结果与讨论、结论
> 超微量天平和电子天平的区别,电子天平的测量范围与选择
> 拉筒法测定LiF-CaF2-Yb2O3体系的表面张力及变化规律
> 地下水质量标准(GB/T 14848-2017)
> 表面张力仪分析气润湿反转剂对缓解煤层水锁效应、解吸速率影响(四)
> 内压力是什么意思?液体表面张力与内压力的区别与定量关系
> 乳胶环法表面张力仪选型指南
> 各种测量ILs汽化焓对比:表面张力法、热重法、简单相加法、 基团贡献法……(二)
推荐新闻Info
-
> 3种不同类型喷雾助剂对氟啶虫胺腈药液表面张力及在苹果叶片润湿持留性能测定(三)
> 3种不同类型喷雾助剂对氟啶虫胺腈药液表面张力及在苹果叶片润湿持留性能测定(二)
> 3种不同类型喷雾助剂对氟啶虫胺腈药液表面张力及在苹果叶片润湿持留性能测定(一)
> 双缔合型稳泡剂及其制备方法和应用
> 烷基糖苷柠檬酸单酯二钠盐水溶液的动态表面张力测定及影响因素(下)
> 烷基糖苷柠檬酸单酯二钠盐水溶液的动态表面张力测定及影响因素(上)
> 不同质量浓度沥青质溶液界面张力、界面剪切黏度及粒径分布图【下】
> 不同质量浓度沥青质溶液界面张力、界面剪切黏度及粒径分布图【上】
> 超微量天平的核心作用及涉及的实验
> 拉脱法测量液体表面张力系数实验原理、缺点及改进方法
多晶硅蚀刻液的制备方法及表面张力测试结果
来源:浙江奥首材料科技有限公司 浏览 903 次 发布时间:2024-11-20
在存储技术发展过程中,半导体存储具有存取速度快、功耗低、体积小、可靠性高等优势,广泛应用在电子设备中,并且正逐步取代机械硬盘成为主流存储器。其中闪存存储器以其单位面积内存储容量大、改写速度快等优点,正逐步取代机械硬盘成为大数据存储领域中的主角。其技术的发展也是朝着不断增大单位面积存储容量的方向发展,由二维到三维,再到不断地增加堆栈层数。
在3D堆叠过程中需要先将多晶硅蚀刻掉,形成凹槽。目前多晶硅蚀刻液体系主要分为碱性或酸性体系。碱性体系对多晶硅的蚀刻存在蚀刻速率慢、硅晶面选择性、蚀刻过程中会生成丘状形貌增加表面粗糙度高等问题。酸性体系可很好的解决上述问题,然而酸性体系中的氢氟酸会优先蚀刻二氧化硅层,所以酸性体系提升氧化硅与多晶硅的选择比是亟待解决的问题。
多晶硅蚀刻液的制备方法:
分别称取各自用量的各个组分,然后将超纯水、氢氟酸、氧化性酸、两亲性离子液体依次加入容器内,充分搅拌溶解,最后过滤,即得所述多晶硅蚀刻液。
其中,所述过滤可采用0.1-0.5μm滤芯过滤。
本发明的多晶硅蚀刻液实施例和对比例的制备方法:
多晶硅蚀刻液实施例1-7包含的组分及摩尔比如表1所示,多晶硅蚀刻液对比例1-3包含的组分及摩尔比如表2所示。按照下表1和表2分别称取各自用量的各个组分,然后将超纯水、氢氟酸、氧化性酸、两亲性离子液体依次加入容器内,充分搅拌溶解,最后采用0.5μm滤芯过滤,即得所述多晶硅蚀刻液。
表1:多晶硅蚀刻液的实施例1-实施例7
表2:多晶硅蚀刻液制备的对比例1-对比例3
表3:测试数据
关于性能测试与说明:
将含有两亲性离子液体的多晶硅蚀刻液用于3D存储芯片中的方法:
将所述多晶硅蚀刻液引入蚀刻槽内,然后使用该蚀刻液在25℃下浸泡该3D存储芯片,浸泡时间为6min,将所述蚀刻后3D存储芯片放入超纯水中冲洗至少两次,每次不得少于30s,即完成处理得到蚀刻后3D存储芯片。
性能1表面张力的测试方法为:
采用上述方法处理完成后,采用芬兰九游jiuyou公司生产的表面张力仪在室温下分别对蚀刻液和经过0.5μm的滤芯过滤200次后的蚀刻液的表面张力进行测试,测试结果参见表3。
性能2蚀刻选择比测试方法为:
分别测定蚀刻液对氧化硅层以及多晶硅层的蚀刻速率,将氧化硅层蚀刻速率除以多晶硅层蚀刻速率,即可得蚀刻选择比。
在本发明中,使用的超纯水均为电阻至少为18MΩ的去离子水。
关于测试结果的分析说明:
基于表3可以看出,对比例1和实施例1的区别仅在于两亲性离子液体不同,其中,对比例1采用常规的N-乙基全氟辛基磺酰胺乙醇作为表面活性剂,导致表面张力增加,蚀刻选择比降低。对比例2未加入1,1,2,2,3,3-六氟丙烷-1,3-二磺酸亚胺锂,无法调节蚀刻速率。对比例3单独采用1,1,2,2,3,3-六氟丙烷-1,3-二磺酸亚胺锂作为表面活性剂,导致表面张力增加,蚀刻选择比降低,而本发明合成的离子液体同时具有多氟基团、环状结构、多羟基,能够显著降低表面张力,同时提高蚀刻选择比。
通过说明书附图做进一步对比说明:
对制备例1的两亲性离子液体进行红外测试,测试结果参见图1。
从图1可以看出,在3433cm-1处为-OH的伸缩振动峰,在3030 cm-1为甲基的伸缩振动吸收峰,在2980 cm-1,2845 cm-1处为亚甲基的不对称伸缩振动和对称伸缩振动,1431cm-1是亚甲基C-H的面内弯曲振动吸收峰,1378cm-1处的峰属于胺类C-N单键的伸缩振动吸收峰,1095 cm-1、1058 cm-1处的峰为S=O的不对称和对称的伸缩振动,综上说明已成功合成离子液体表面活性剂。